Phase Transition Analysis of Sparse Support Detection from Noisy Measurements
نویسندگان
چکیده
This paper investigates the problem of sparse support detection (SSD) via a detection-oriented algorithm named Bayesian hypothesis test via belief propagation (BHT-BP) [7],[8]. Our main focus is to compare BHT-BP to an estimation-based algorithm, called CS-BP [3], and show its superiority in the SSD problem. For this investigation, we perform a phase transition (PT) analysis over the plain of the noise level and signal magnitude on the signal support. This PT analysis sharply specifies the required signal magnitude for the detection under a certain noise level. In addition, we provide an experimental validation to assure the PT analysis. Our analytical and experimental results show the fact that BHT-BP detects the signal support against additive noise more robustly than CS-BP does.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملAdaptive Group Testing Strategies for Target Detection and Localization in Noisy Environments
This paper studies the problem of recovering a signal with a sparse representation in a given orthonormal basis using as few noisy observations as possible. As opposed to previous studies, this paper models observations which are subject to the type of ‘clutter noise’ encountered in radar applications (i.e., the measurements used influence the observed noise). Given this model, the paper develo...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.6388 شماره
صفحات -
تاریخ انتشار 2013